(March 3, 1845 – January 6, 1918)

Georg Cantor’s expertise was honed by Karl Weierstrass, and by Ernst Kummer who supervised his doctorate. Before inventing his Set Theory, he worked on Number Theory and Analysis. In fact, his first ten treatises were entirely on Number Theory. Eduard Heine (the grand wizard of Spherical Harmonics and Uniform Continuity) noticed his brilliance and urged him to tackle the persistent issue of the Uniqueness of the Representation of a Function by Trigonometric Series. Masterminds such as Bernhard Riemann, Peter Dirichlet and Rudolf Lipschitz have tried and failed to solve this problem. It stumped Professor Heine too, but Cantor solved it: resulting in his discovery of Transfinite Ordinals. He followed-up by publishing elaborate treatises on both Trigonometric Series and Irrational Numbers, before assembling them into his Set Theory masterpiece. In setting this stage, Cantor first defined Cardinal Numbers, Ordinal Numbers, before unveiling the Theory of Transfinite Numbers. His Set Theory treatise (titled: On a Property of the Collection of All Real Algebraic Numbers) conclusively proved that more than one kind of infinity exist, before establishing a new way of deducing Transcendental Numbers. This revolution was such that it attracted severe criticisms from several top mathematicians (such as Henri Poincare, Hermann Weyl, Luitzen Brouwer and Leopold Kronecker) who failed to grasp it, until David Hilbert and Richard Dedekind gave Cantor their full support. For his achievements, the London Royal Society awarded Cantor their highest maths honor (the Sylvester Medal). He is also the eponym of the 76-kilometer-wide Cantor lunar crater.


  1. Cantor was truly great. What he discovered took Poincare, Weyl and Kronecker a long time to understand.

Leave a Reply

Your email address will not be published. Required fields are marked *

Post comment